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WIDE CONTEXTUAL RESIDUAL NETWORK WITH ACTIVE LEARNING FOR REMOTE
SENSING IMAGE CLASSIFICATION

Shengjie Liu, Haowen Luo, Ying Tu, Zhi He, Jun Li

Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation,
School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China.

ABSTRACT

In this paper, we propose a wide contextual residual network
(WCRN) with active learning (AL) for remote sensing image (RSI)
classification. Although ResNets have achieved great success in var-
ious applications (e.g. RSI classification), its performance is limited
by the requirement of abundant labeled samples. As it is very diffi-
cult and expensive to obtain class labels in real world, we integrate
the proposed WCRN with AL to improve its generalization by using
the most informative training samples. Specifically, we first design
a wide contextual residual network for RSI classification. We then
integrate it with AL to achieve good machine generalization with
limited number of training sampling. Experimental results on the
University of Pavia and Flevoland datasets demonstrate that the pro-
posed WCRN with AL can significantly reduce the needs of samples.

Index Terms— Residual networks; active learning; remote
sensing; classification; hyperspectral image; SAR

1. INTRODUCTION

Deep learning, which can be considered as the extension of tradi-
tional artificial neural network, has been widely used for remote
sensing image (RSI) classification [1]. Typical deep learning meth-
ods include the deep neural networks (DNNs), convolutional neu-
ral networks (CNNs) [2] and residual networks (ResNets) [3]-[6].
Specifically, ResNets, extended from CNNs, utilize skipped connec-
tions to facilitate the propagation of gradients, shown to be robust
with very deep architecture [4]. However, its application to RSI
classification remains a challenge due to the limited availability of
training samples [1].

Active learning (AL), which aims at finding the most informa-
tive training set, can be used to minimize the number of required
labeled data with a relative good machine generalization [7]. Rather
than choosing the training set randomly, AL selects the training data
actively based on a certain criterion such as the mutual information
(MI) [8], the breaking ties (BT) [9], the modified BT (MBT) [7],
etc. By using the most informative samples, the deep networks can
achieve fast convergence [10]. In [10], active learning and transfer
learning were integrated with AlexNet for biomedical image anal-
ysis, showing that the cost of sampling can be cut by at least half.
In [11], AL with semi-supervised learning was used for SAR image
recognition, demonstrating good effectiveness of AL for convolu-
tional networks. In [1], a new AL algorithm, namely the weighted

This work was supported by National Natural Science Foundation of
China under Grants 61771496 and 41501368, National Key Research and
Development Program of China under Grant 2017YFB0502900, Guangdong
Provincial Natural Science Foundation under Grant 2016A030313254, and
the Fundamental Research Funds for the Central Universities under Grant
No. 16lgpy04.

incremental dictionary learning (WI-DL) was integrated with a non-
convolutional networks for HSI classification, showing that active
learning with non-convolutional networks achieved higher accuracy
with fewer training samples for HSI images.

In this paper, we propose the WCRN with AL for RSI classifica-
tion, where a new network named WCRN is designed for RSI classi-
fication and then integrated with AL to improve the machine general-
ization. The remainder of the paper is organized as follows. Section
II presents the methodology. Experimental results are shown in Sec-
tion III, which illustrates the effectiveness of the proposed method.
Finally, we draw some conclusions in Section IV.

2. METHODOLOGY

In this section, we will present the proposed method for RSI classi-
fication.

2.1. Wide Contextual Residual Network (WCRN)

The architecture of the proposed WCRN is shown in Fig. 1. Inspired
by the works in [5], [6], [12], [13], we design the proposed WCRN
with a multi-scale convolutional layer and one residual unit.

In the proposed WCRN, the number of kernels in a convolu-
tional layer is significantly larger than that in the traditional CNN
or ResNets. This is because RSIs contain many spectral bands or
feature channels, e.g., Hyperspectral images venereally with hun-
dreds of bands, a wide network therefore would better preserve the
spectral/feature information. Specifically, the number of kernels per
convolutional layer is 256 in WCRN, while the number of kernels in
traditional CNN or ResNets ranges from 8 to 128 [3], [5], [6] .

Moreover, for the convolutional layer, we adopt a multi-scale
filter bank that locally convolves the input image with 1×1 and 3×3
convolutional kernels to extract the spectral/feature correlations and
spatial correlations, respectively.

For the residual unit, we adopt the newly developed residual unit
in [5], as shown in Fig. 2. As shown in Fig. 2, we use batch normal-
ization (BN) [12] to ensure appropriate inputs before rectified linear
unit (ReLU). The BN layer, which normalizes each scalar feature in-
dependently, can regularize and speed up the training process. For a
layer with d-dimensional input x = (x(1), ..., x(d)), each dimension
can be normalized as follows,

BN(x̂(k)) =
x(k) −E[x(k)]√

Var[x(k)]
, (1)

for k = 1, . . . , d, where the expectation, E[·], and variance, Var[·],
are computed over the training data set.

7145978-1-5386-7150-4/18/$31.00 ©2018 IEEE IGARSS 2018
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Fig. 1. The proposed WCRN.

As shown in [4], the key idea of ResNets is to add a shortcut
connection every two layers,

xl+1 = f(xl + F(xl,Wl)), (2)

where xl and xl+1 are input and output of the l-th unit,Wl is a set of
weights (and biases) associated with the l-th unit, andF is a residual
function and f is the activation function ReLU.

In this study, we apply the improved residual unit [5] to enhance
the idea of shortcut by identity mappings, which is given by,

xl+1 = xl + F(f̂(xl),Wl), (3)

where f̂ is an activation that only affects the F path (the non-skip
part) of the unit.

Addition

BN ReLU Conv BN ReLU Conv

Conv BN ReLU Conv BN

Addition ReLU

Fig. 2. The two residual units introduced in [4] (Top) and [5] (Bot-
tom). In this work, we adopt the bottom one for our method.

2.2. Active Learning

The basic idea of AL is to iteratively enlarge the training set by re-
questing an expert to label new samples from the unlabeled set. A
relevant question is what samples in the unlabeled set are informa-
tive and should be chosen for training. Base on the posterior proba-
bilities produced by the proposed networks, we adopt four different
sampling schemes for selection,

• Random selection (RS), where the new samples are randomly
selected from the candidate set.

• Mutual information (MI)-based criterion, which aims at find-
ing the samples maximizing the MI between the ResNet
model and the class labels.

• Breaking ties (BT), which aims at finding the samples min-
imizing the distance between the first two most probable
classes.

• modified BT (MBT), which aims at finding samples maxi-
mizing the probability of the large class for each individual
class.

3. EXPERIMENTAL RESULTS

In this section, two real RSIs are used to evaluate the performance
of the proposed WCRN with AL. The first one is a hyperspectral
image collected by the ROSIS optical sensor over the urban area of
the University of Pavia, Italy, on July 8, 2002. The spatial reso-
lution is 1.3 m/pixel, and the number of spectral bands in the ac-
quired image is 103 (with a spectral range from 0.43 to 0.86 µm).
Fig. 4 (a) shows a false color composite of the image, while Fig. 4
(b) shows a ground truth map, which contains 42776 samples and
9 ground truth classes of interest. The other data used here is the
AirSAR L-band PolSAR dataset, obtained by National Aeronautics
and Space Administration/Jet Propulsion Laboratory (NASA/JPL) in
1989 over the Flevoland site in the Netherlands. Pauli composite and
the ground truth are displayed in Fig. 6 (a) and (b), respectively. The
Flevoland image, with a size of 375 × 512, contains 54276 samples
in the reference data and 11 classes.

Before describing the obtained results, we introduce the experi-
mental settings in this work.

• The proposed WCRN is implemented by using Keras with
TensorFlow backend. All convolutional layers are initialized
with a zero-mean Gaussian distribution with standard devia-
tion of 0.01. In addition, Adadelta optimizer [14] is used to
speed up the training process.

• To avoid overfitting, training samples are augmented four
times by mirroring across the horizontal, vertical, and diag-
onal axes [6]. Furthermore, in order to increase the model
stability, in the end of AL, models of the final nine epoches
are used to predict a group of results, while the final results
are generated by majority voting.

3.1. University of Pavia Dataset

In the first experiment, we analyze the impact of the number of resid-
ual units and kernels in the proposed WCRN. Table 1 shows the re-
sults by using different number of residual units and kernels. It can
be observed that, the results obtained by using one residual unit with
more kernel are better. This is because, as aforementioned, a wide
network better preserves the spectral/feature information due to the
fact that there are 103 bands in the considered dataset. Furthermore
with one residual unit, the parameters involved in the learning are
much less that the other cases. Since the training information is lim-
ited, less parameters would lighten the computational burden. There-
fore, in the following experiments, we empirically set the number of
units and kernels as 1 and 256, respectively.

In the second experiment, we compare the proposed WCRN
with a newly developed contextual CNN approach [6]. We also
adopt the majority voting strategy of multiple models to this con-
textual CNN approach, for more robust performance. Table 2 shows
the obtained overall accuracies (OAs) along with the standard devi-
ation, from 10 independent runs, on the University of Pavia dataset.
Two difference scenarios are considered in this experiment. A first
case, without AL, uses 1800 training samples (200 per class, same as
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Table 1. The OAs, along with the standard deviations, obtained by
the proposed WCRN by using different number of residual units and
kernels.

No. of Residual Units No. of Kernels OA

1 32 97.69 ± 0.21 %
1 64 98.07 ± 0.20 %
1 128 98.28 ± 0.25 %
1 256 98.36 ± 0.26 %

2 32 97.88 ± 0.36 %
2 64 98.13 ± 0.37 %
2 128 98.24 ± 0.20 %
2 256 98.27 ± 0.72 %

that in [6]) randomly selected from the reference data. In the other
case, a total of 600 samples with 510 were actively selected by us-
ing different strategies. Notice that, for the proposed approach, we
set a batch size as 20. The total epoches are 200 to make sure that
the network can be well trained. As can be observed from Table 1,
without AL, the proposed approach achieved the best results in com-
parison with the contextual CNN. Furthermore, by adopting AL, the
networks significantly reduces the requirement of the training sam-
ples.

Table 2. The obtained overall accuracies(OAs, averaging from 10
independent runs), along with standard deviations for the Univer-
sity of Pavia dataset). For the results obtained with AL, 90 samples
(10 per class) were used as the initial training set, and 510 samples
(10 per iteration) were actively selected by using different strategies.
The best results are given in bold.

Method OA Samples

Contextual CNN [6] 95.97 ± 0.46 % 1800
Contextual CNN (vote) 97.75 ± 0.24 % 1800
WCRN 98.36 ± 0.26 % 1800

Contextual CNN (vote) 94.06 ± 1.19 % 600
WCRN (RS) 96.22 ± 0.38 % 600
WCRN (MI) 99.41 ± 0.09 % 600
WCRN (BT) 99.43 ± 0.08 % 600
WCRN (MBT) 99.31 ± 0.08 % 600

In the third experiment, we evaluated the proposed WCRN with
the AL scheme. Fig. 3 presents the obtained OAs as a function of
the number of training samples in the AL scheme of the proposed
WCRN, by using 90 samples in total (10 per class) as the initial
training set. In this experiment, for the AL, 10 samples were ac-
tively selected per iteration. It can be observed that, by adopting
AL, the performance is greatly boosted as the number of training
sample increases. Furthermore, for the considered AL strategies,
BT and MBT achieved better results, in comparison with MI, when
the number of training samples are small. This is expected due to
the fact that the training samples selected by BT and MBT are with
more diversity than those by MI. Finally, as the number of train-
ing samples increases to a relative medium size, i.e., around 480 in
this experiment, all AL strategies achieved very similar and robust
performance with respect to the OA, which are much better than that
obtained by RS. This is expected, as the number of samples increases
by AL, the sample uncertainty decreases.

Fig. 3. The OAs, along with the standard deviations, as a function
of the number of training samples in the AL scheme of the proposed
WCRN over the University of Pavia dataset, where 90 samples in to-
tal (10 per class) were used as the initial training set, and 10 samples
were actively selected per iteration.

Finally, for illustrative purposes, Fig. 4 (c) and (d) show the clas-
sification maps by RS and BT, respectively, where 400 training sam-
ples were used for training, with 310 samples were actively selected
by the AL strategies. It can be observed that the results obtained by
BT are remarkable, which are better than that obtained by MI.

(a) False color map (b) Ground truth (c) RS (95.6%) (d) BT (98.5%)

Fig. 4. The classification maps, along with the OAs, of the Univer-
sity of Pavia dataset, where 400 samples were used for training, with
310 were actively selected by the AL strategy.

3.2. The Flevoland Dataset

For the Flevoland SAR dataset, in the first experiment, the proposed
WCRN is compared with contextual CNN [6]. It should be noted
here, similar to the pervious experiments, we use the contextual
CNN with a voting strategy, as it can produce better and more robust
results. Table 3 shows the obtained OAs along side with standard
deviation from 10 independent runs. It can be seen that the proposed
WCRN achieved better performance than the competitor. Further-
more, by including the AL strategy, the proposed method can obtain
a very good classification accuracy.

In the second experiment, we evaluate the proposed WCRN with
AL as a function of number of training samples, by using 110 sam-
ples (10 per class) as the initial training set and 10 samples actively
selected per iteration. Fig 5 presents the obtained OAs, along with
the standard deviations, as a function of the number of training sam-
ples in the AL scheme of the proposed approach. Similar observa-
tions can be obtained as to the experiments of the University of Pavia
dataset. First of all, it can be seen that, with the AL strategies, the
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results obtained are much better than that of RS. For instance, with
620 samples (510 were actively selected), the results obtained by BT,
MBT and MI are about 98.5%, which is 4% higher than that of RS,
which is about 94.5%. Furthermore, when the number of training
samples are small, BT and MBT achieved much better accuracies
than MI. As the number of training samples reaches around 500,
all AL methods converges to similar performance. This is, again, a
similar observation to the pervious dataset. As aforementioned, the
sample uncertainty significantly decreases with the increase of num-
ber of samples by the AL strategies, which aim at finding the most
informative samples.

Finally, for illustrative purposes, Fig. 6 (c) and (d) show the
obtained classification maps by using 600 training samples, with 110
ones as the initial set and 490 actively selected, respectively.

Table 3. The obtained overall accuracies (OAs, averaging from 10
independent runs), along with standard deviations for the Flevoland
dataset). For the results obtained with AL, 110 samples (10 per class)
were used as the initial training set, and 510 samples (10 per itera-
tion) were actively selected by using different strategies. The best
results are given in bold.

Method OA Samples

Contextual CNN (vote) 93.38 ± 0.38 % 600
WCRN (RS) 94.05 ± 0.48 % 600
WCRN (MI) 97.68 ± 0.47 % 600
WCRN (BT) 98.23 ± 0.15 % 600
WCRN (MBT) 98.01 ± 0.17 % 600

Fig. 5. The OAs, along with the standard deviations, as a function
of the number of training samples in the AL scheme of the proposed
WCRN over the Flevoland dataset, where 110 samples in total (10
per class) were used as the initial training set, and 10 samples were
actively selected per iteration.

4. CONCLUSION

In this paper, we design a wide contextual residual network (WCRN)
for the classification of remote sensing images (RSIs). Then, we in-
troduce active learning into the proposed WCRN, aiming at reducing
the necessarity of labeled training information. The advantages of
the proposed approach are two folds. On the one hand, the proposed
WCRN can extract and maintain the abundant spectral/feature infor-
mation, as well as spatial information in the input RSIs, by taking ad-
vantage from the contextual convolutional layers with a large num-
ber of kernels. On the other hand, the integration of AL leads to good

(a) False color map (b) Ground truth

(c) RS (95.6%) (d) BT (98.5%)

Fig. 6. The classification maps, along with the OAs, of the Flevoland
dataset, where 600 samples were used for training, with 490 were
actively selected by the AL strategy.

machine generalization with limited number of training samples by
finding the most informative samples. Experimental results on two
RSIs, including the University of Pavia hyperspectral dataset, and
the Flevoland SAR dataset, demonstrate that the proposed method
can significantly reduce the needs of training samples.
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