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ABSTRACT

With the near completion of WUDAPT Level 0 data, one of
the next goals is to generate more accurate and detailed lo-
cal climate zone (LCZ) maps. An important issue is how to
integrate building height information into LCZ maps. We
here present a multi-label classification method using very
high resolution (VHR) imagery to implicitly integrate build-
ing height information. Since we humans can tell whether a
place is high-rise or not based on the shading of buildings and
the surrounding context, it is possible to extract such infor-
mation using deep learning methods. We use Hong Kong as
case study and show the potential of LCZ mapping with VHR
imagery in distinguishing small-scale landscape features like
city parks. The multi-label LCZ maps also provide a solution
to generate fine-grained subclass LCZ mapping, in which a
place can be classified as a combination of multiple LCZs,
e.g., compact low-rise with open high-rise.

Index Terms— Multi-label classification, local climate
zone, mapping, very high resolution, subclass

1. INTRODUCTION

Fine-grained mapping of local climate zone (LCZ) is a
next goal of the World Urban Database and Access Portal
Tools (WUDAPT) project. Currently, LCZ maps are gen-
erated into 17 classes. The common protocol is to translate
free-of-charge medium-resolution satellite images into LCZ
maps. Among them, Landsat with 30 m spatial resolution
and Sentinel-2 with 10 m resolution are the most often used
image sources [1, 2]. Although these medium-resolution im-
ages achieve satisfactory results in generating current LCZ
maps, they lack the contextual details for more complex LCZ
mapping, e.g., with building height considered [3].

Building height is an important part in the next generation
of WUDAPT, which should significantly distinguish high-rise
buildings from the low-rise ones. However, height estimation
by Sentinel-1 PolSAR data has suffered in LCZ mapping. In
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many cases, the integration of Sentinel-1 PolSAR data did not
help and even degraded the mapping accuracy [4].

New advanced machine learning models now can estimate
building height from a single very high resolution (VHR) im-
age due to the shading of buildings. Height estimation from
a single image was also a track of the 2019 IEEE GRSS Data
Fusion Contest [5]. Thus, it should be possible to extract
and integrate height information for LCZ mapping. With
the height information and the increase of spatial resolution,
VHR images are promising in generating more accurate urban
climate maps.

An extra benefit is the ability to further distinguish de-
tails of an urban place. Kotharkar and Bagade (2018) [6]
show that the subclass LCZ mapping can represent a more
complex combination of the natural and built environment.
They generate an LCZ map for the Nagpur city in India with
subclass LCZs such as compact mid-/low-rise (LCZ-2/3) and
compact/light-weight low-rise (LCZ-3/7). As pointed out by
them, the complex natural and built environment requires a
more detailed classification of urban climate zones. This is
especially the case for Asian cities, since the land use pattern
of Asian cities is more mixed and fragmented [7].

Therefore, in this study, we use Hong Kong as a case to
show the potential of multi-label subclass LCZ mapping in a
complex high-rise high-density city. Its relatively small-scale
urban design and high spatial heterogeneity make it a perfect
case for detailed LCZ mapping [8].

2. DATA AND METHOD

2.1. VHR Imagery for Multi-label LCZ

We constructed a multi-label LCZ dataset for this study. The
dataset consists of 72,494 VHR images from Google and Bing
satellite images in the Pearl River Delta region, in which im-
ages collected in Hong Kong account for 18.3%, as shown in
Table 1. These VHR images were collected at the zoom level
of 18 with a spatial resolution of better than 1 m (close to 0.6
m depending on the latitude). Each image tile is in a size of
256×256.

Using web map satellite imagery to create LCZ maps al-
lows us to easily integrate other information for accurate clas-
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Fig. 1: Network used in this study.

Table 1: Number of labeled images of the dataset

City Number of Images Percentage (%)
Guangzhou 13596 18.8
Shenzhen 13203 18.2

Foshan 4644 6.4
Dongguan 4579 6.3
Huizhou 4493 6.2

Zhongshan and Jiangmen 9514 13.1
Zhuhai and Macau 9209 12.7

Hong Kong 13256 18.3
Total 72494 100

sification, e.g., road network density. It also provides a natural
hierarchy in generating multiple scales of LCZ maps, as each
image tile can be divided into four sub-image tiles in the next
zoom level. The tile system of popular online web maps uses
the Spherical Web Mercator projection [9]. At a zoom level
of 18, the spatial resolution is roughly 0.6 m at the Equator.
For a 256×256 image tile, an LCZ covers roughly a size of
153×153 m2.

In the annotation process, each image is labeled inde-
pendently based on its own urban context (the 153×153 m2

area). To reduce the output space, we restricted the number of
classes up to three, though in some extreme cases four or five
was allowed, as shown in Fig. 2c. The class distribution is im-
balance as shown in Figs. 2a and 2b (note the y-axis is in log
scale). LCZ-13 bush is the most popular while LCZ-10 heavy
industry is the least popular. The annotation was processed
by several experts and then cross-validated once to check for
incorrectness. But we should still be careful in using these
datasets. As pointed out by [10], we should pay attention to
the label quality even for the popular ImageNet dataset.

2.2. Multi-label convolutional neural network

We design a multi-scale convolutional neural network (CNN)
as a baseline for multi-label LCZ mapping, as shown in Fig.
1. It consists of four residual units [11], and we replace the
last function from softmax to sigmoid to achieve multi-label
classification. A total of three settings are being tested. The
first one uses stride=1 and dilated rate=1 (Standard). The
second one uses stride=3 and dilated rate=1 (Light-weight).
The third one uses stride=1 and dilated rate=3. A high stride
reduces computation by reducing the size of feature maps,
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(c) Distribution of number of labels in a scene.

Fig. 2: Summary of statistics of the multi-label dataset.

which may be useful in a 256×256 image classification task.
A high dilated rate empowers convolutions to shave a large
receptive field.

2.3. Evaluation metrics

The evaluation of multi-label classification can be tricky, as
the output space becomes exponentially large due to the pos-
sible combinations of coexist labels [12]. Here, we select the
Hamming loss (hloss), ranking loss (rankloss), instance accu-
racy (acc) and Fβ metrics to examine the multi-label classifi-
cation performance. We set the β value as one. The two loss
metrics are the smaller the better, and the acc and Fβ are the
larger the better. For details of these evaluation metrics, we
refer readers to the review paper by Wu and Zhou (2017) [12].



3. RESULTS AND ANALYSIS

Experiments are conducted with TensorFlow 1.9. We use the
AdaDelta optimizer [13] with a learning rate of 1.0 for 80
epochs and of 0.1 for another 20 epochs to train the network.
The reported results are averaged from five random runs with
a fixed train-test split: half for training and half for testing.

3.1. Single-Label VHR LCZ Maps

To obtain single-label LCZ maps via the multi-label dataset,
we adopt a simple solution to treat the class with the max-
imum classification probability as the dominant class. The
map can be found at https://sjliu.me/lczmap/hongkong, in
which you can check the LCZ map with satellite image si-
multaneously.

We here show some samples of downtown Hong Kong in
Fig. 3. The LCZ map via VHR imagery captures the het-
erogeneity of urban area. For example, at 22.30°N, 114.17°E
where the Kowloon Park locates, the LCZ map via VHR im-
agery successfully identifies the region as four small LCZ-13
scenes (bush, scrub), roughly an area of 306×306 m2. But
in a map via medium-resolution Sentinel-2 imagery, the re-
gion becomes too small to be correctly classified using scene
classification. As a result, the map obtained via medium-
resolution data is smooth but lacks details of urban context.
The existence of green spaces like Kowloon Park has been
proven to successfully mitigate the urban heat island effect
[14]. Such details are essential in generating urban climate
maps. Therefore, the usage of VHR imagery is crucial for
LCZ mapping and is worth exploring.

Another noteworthy phenomenon is the capture of large
roads and highways as LCZ-15 (bare rock or paved), e.g.,
the Stonecutters Bridge at 22.325°N, 114.12°E. These small
features are often overlooked in LCZ mapping with medium-
resolution imagery. But their high albedo nature leads to more
solar radiation and is one of the causes of urban heat island
[15]. Future investigations should look into whether the dif-
ference in handling paved materials leads to significant varia-
tions in weather research and forecasting models.

3.2. Multi-label LCZ Mapping Results

The multi-label classification results are shown in Table 2.
For the three networks trained on the same domain (Hong
Kong), the best result is obtained via the standard solution.
It achieves an F1 of 0.8550 and is ranked first by acc. The
dilated solution is marginally after the standard solution and
achieves a slightly smaller rankloss. The light-weight solu-
tion, though computation-efficient, has the worst performance
among the three in terms of rankloss, acc, and F1. But it has
the best performance if evaluated by hloss. The hloss is more
forgiving and only penalizes the individual labels, while other
metrics evaluate the classification performance based on sam-
ples. The low hloss of the light-weight network means it as-

Fig. 3: Downtown single-label LCZ Maps and the reference
image. Top to down: reference satellite image; LCZ map via
10 m imagery; LCZ map via VHR imagery.

signs more incorrect labels to a given sample though one or
several of the labels are correct. we show some multi-label
classification examples in Fig. 4. The upper two are correctly
classified. The label of lower left is compact high-rise and
bush (LCZ-1/13), and the model predicts it as compact high-
rise, bush, and rock/paved (LCZ-1/13/15). The label of lower



Table 2: Classification. All: train on all samples including
Hong Kong; Transfer: train on all other samples excluding
Hong Kong. ↓: the smaller the better; ↑: the larger the better

Train Test hloss ↓ rankloss ↓ acc ↑ F1 ↑
Hong Kong Hong Kong .0418 .1421 .7746 .8550

Standard All Hong Kong .0510 .1899 .7085 .8022
Transfer Hong Kong .0724 .2833 .5675 .6840

Hong Kong Hong Kong .0399 .1845 .7596 .8325
Light-weight All Hong Kong .0474 .1908 .7295 .8105

Transfer Hong Kong .0687 .3047 .5864 .6833
Hong Kong Hong Kong .0466 .1313 .7657 .8515

Dilated All Hong Kong .0521 .1897 .7066 .7996
Transfer Hong Kong .0787 .2828 .5394 .6662

Label: Comp. high, Comp. mid, Rock/paved
Pred.: Comp. high, Comp. mid, Rock/paved

Label: Comp. high, Comp. mid
Pred.: Comp. high, Comp. mid

Label: Comp. high, Bush
Pred.: Comp. high, Bush, Rock/paved

Label: Sparse built, Dense tree
Pred.: Dense tree

Fig. 4: Multilabel LCZs.

right is sparsely built and dense tree (LCZ-9/11), while the
model neglects the sparsely built component.

The networks trained on all samples and the transfer
learning still suffer from domain shift, although we expected
the domain shift problem would be minimized since spec-
tral response does not matter in three-channel VHR images.
Other studies also found that a local solution is better for LCZ
mapping in individual cities [2, 16]. Further investigations
should look into the domain shift problem in LCZ mapping.

4. CONCLUSIONS AND FUTURE DIRECTIONS

We present a case study of multi-label local climate zone
(LCZ) mapping in Hong Kong using scene classification tech-
niques with very high resolution (VHR) imagery. By using
VHR imagery, we can capture details of the urban landscape,
e.g., small city parks, which can mitigate urban heat island ef-

fects and have an non-negligible impact on the local climate.
These VHR images at a resolution better than 1 m provide
more urban details than medium-resolution images with 10
m resolution. The hidden height information in the shading
of buildings will benefit the detailing of LCZ mapping. The
presented cases in Hong Kong already show promising ad-
vantages in using the VHR imagery.

With the multi-label techniques, we can classify an urban
area into a combination of multiple climate zones, leading to
subclass LCZ mapping. But the exponentially-increased out-
put space requires models to handle the coexistence of mul-
tiple labels (climate zones). Future investigation should ex-
plore their relationships and analyze its performance in the
generating LCZ maps to understand our local climate.

5. REFERENCES

[1] Yoo et al., “Comparison between convolutional neural networks and
random forest for local climate zone classification in mega urban areas
using landsat images,” ISPRS J. Photogramm. Remote Sens., vol. 157,
pp. 155–170, 2019.

[2] Liu and Shi, “Local climate zone mapping as remote sensing scene
classification using deep learning: A case study of metropolitan china,”
ISPRS J. Photogramm. Remote Sens., vol. 164, pp. 229–242, 2020.

[3] Bechtel et al., “Generating wudapt level 0 data–current status of pro-
duction and evaluation,” Urban Clim., vol. 27, pp. 24–45, 2019.

[4] Gawlikowski et al., “On the fusion strategies of sentinel-1 and sentinel-
2 data for local climate zone classification,” in IGARSS 2020. IEEE,
2020.

[5] Le Saux et al., “2019 ieee grss data fusion contest: Large-scale seman-
tic 3d reconstruction [technical committees],” IEEE Geosci. Remote
Sens. Mag., vol. 7, no. 4, pp. 33–36, 2019.

[6] Kotharkar and Bagade, “Local climate zone classification for indian
cities: A case study of nagpur,” Urban Clim., vol. 24, pp. 369–392,
2018.

[7] Schneider and Woodcock, “Compact, dispersed, fragmented, exten-
sive? a comparison of urban growth in twenty-five global cities using
remotely sensed data, pattern metrics and census information,” Urban
Stud., vol. 45, no. 3, pp. 659–692, 2008.

[8] Zheng et al., “Gis-based mapping of local climate zone in the high-
density city of hong kong,” Urban Clim., vol. 24, pp. 419–448, 2018.

[9] Stefanakisl, “Web mercator and raster tile maps: two cornerstones of
online map service providers,” Geomatica, vol. 71, no. 2, pp. 100–109,
2017.

[10] Northcutt et al., “Confident learning: Estimating uncertainty in dataset
labels,” arXiv preprint arXiv:1911.00068, 2019.

[11] He et al., “Deep residual learning for image recognition,” in CVPR,
2016, pp. 770–778.

[12] Wu and Zhou, “A unified view of multi-label performance measures,”
in ICML2017. PMLR, 2017, pp. 3780–3788.

[13] Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint
arXiv:1212.5701, 2012.

[14] Yang et al., “Assessing the impact of urban geometry on surface urban
heat island using complete and nadir temperatures,” Int. J. Climatol.,
2020.

[15] Mohajerani et al., “The urban heat island effect, its causes, and miti-
gation, with reference to the thermal properties of asphalt concrete,” J.
Environ. Manage., vol. 197, pp. 522–538, 2017.

[16] Kim et al., “Developing high quality training samples for deep learning
based local climate classification in korea,” NeurIPS2020 Workshop:
AI for Earth Sciences, 2020.


