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ABSTRACT

Particulate matter (PM), such as PM2.5 and PM10, was the
major pollutant in a severe air pollution episode in 2013 east-
ern China. Limited by the coverage of stations, fine-scale
monitoring at every corner in the city is difficult, if not impos-
sible. Hyperspectral imagery can capture the ground and air
information, from which we can estimate the concentrations
of PM. In this study, we develop a multitask learning method
to estimate the concentrations of PM based on the 10-m hy-
perspectral data from the newly-launched Zhuhai-1 satellites.
We first convert the raw radiance to top-of-atmosphere (TOA)
reflectance using the 1985 Wehrli solar irradiance spectrum.
Then, we train a multitask network to simultaneously esti-
mate PM2.5 and PM10 concentrations based on the TOA hy-
perspectral data. Results show that our method leads to esti-
mations of an R-squared of 0.77 for PM2.5 and an R-squared
of 0.42 for PM10.

Index Terms— Air quality, PM2.5, PM10, hyperspectral
data, multitask learning, Zhuhai-1 satellite

1. INTRODUCTION

Studies have shown that long-term exposure to air pollution
increases the risks of lung cancers, heart diseases, cardiopul-
monary diseases, and cognitive impairment [1, 2, 3, 4]. With
the fast industrialization of mainland China since the 1980s,
air quality has degraded to sometimes over 200 µg/m3,
where the standard by WHO is below 35 µg/m3 [5]. Since
the severe air pollution in 2013 eastern China, the govern-
ment has started to build a national network of 1600 stations
to monitor air quality, including PM2.5 and PM10. The time
frequency is one hour. Although ground stations have filled
the gap of lack of data, these stations are unevenly distributed
in over 300 cities and mostly installed at locations with prime
monitoring conditions, leading to a lack of fine-scale mon-
itoring. Pérez et al. (2010) [6] pointed out that PM2.5 on
or near road networks were more severe. With only a few
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stations in each city, it is not possible to monitor air quality
at a fine scale that can distinguish near-road or off-road air
pollution [7].

Several studies estimated PM concentrations based on
satellite data. Except for the few that estimate PM concentra-
tions directly from TOA reflectance [7, 8], most of the ex-
isting studies first estimate aerosol optical depth (AOD), and
then estimate PM concentrations based on AOD [9, 10, 11].
Although there are ready-to-use AOD products such as
MODIS, VIIRS, Himawari-8 and Sentinel-5, these prod-
ucts are mostly with a spatial resolution of greater than 500
m. It is difficult to use these products to analyze within-
city air quality. In recent years, some studies attempted to
use medium-resolution satellite data like Landsat-TM/OLI,
Sentinel-2 and GF-1 to estimate AOD and PM concentra-
tions [12, 13, 14, 15]. But these satellite data, compared to
the most-often-used MODIS, contain fewer spectral bands;
and they are not ready-to-use products.

For AOD estimation, the key is to separate land and at-
mosphere information and accurately estimate the land sur-
face reflectance (down-of-atmosphere, DOA). Current pop-
ular algorithms include the Dense Dark Vegetation (DDV),
the Deep Blue, and a novel simplified aerosol retrieval algo-
rithm named SARA [16, 17, 18]. The DDV algorithm uses
the different reflectance in blue and red channels of vegeta-
tion and their linear relationships with infrared to estimate
the land surface reflectance of blue and red lights. After that,
the contributions from the atmosphere of TOA reflectance can
be calculated. But this algorithm only works in areas with
dense vegetation. In cities and deserts with high albedo of red
and blue lights, the algorithm’s prerequisite cannot be met.
Additionally, the linear relationship between spectral bands
is too rough for ideal estimation [19]. The Deep Blue al-
gorithm assumes that blue light has short wavelength, low
DOA reflectance, and high contribution on AOD; therefore,
it can be compared with nearby clear DOA reflectance to es-
timate AOD. But the lack of high-resolution land surface re-
flectance limits its usage. The SARA algorithm is based on
radiative transfer models but the calculation is too complex
and requires the asymmetry parameter g and aerosol models.
In summary, limitations exist in all three popular AOD algo-
rithms, where the bottleneck is the estimation of land surface
reflectance. Additionally, via the estimation of AOD to esti-



Fig. 1: The 1985 Wehrli Standard Extraterrestrial Solar Irra-
diance Spectrum

mate PM may lead to further errors.
Since the relationship from TOA to AOD to PM holds, it

should be possible to estimate PM directly from TOA. There
were a few studies in this direction. For example, Shen et
al. (2018) [7] used a restricted Boltzmann machine to esti-
mate PM2.5 based on MODIS imagery with 500 m resolu-
tion. Liu et al. (2019) [8] used ensemble learning to directly
estimate PM2.5 from Himawari-8 imagery with 2000 m res-
olution. These studies showed some promising results, but
their resolutions were too low for neighborhood-scale analy-
sis. In this study, we directly estimate PM2.5 and PM10 from
TOA reflectance at 10 m spatial resolution on the Zhuhai-1
hyperspectral imagery.

2. METHOD AND DATA

2.1. Data

The Zhuhai-1 satellites were launched by Zhuhai Orbita.
They provide 32 bands within 443 and 940 nm on a spa-
tial resolution of 10 m. A total of 81 scenes across various
Chinese cities were downloaded in 2019. After screening
for those with ground stations and valid cloudless data, the
number of remaining scenes was 30. A total of 77 data points
were extracted for final analysis.

The obtained level-1 hyperspectral data need preprocess-
ing. We first converted them to radiance Lλ (radiometric cal-
ibration):

Lλ = aλ ×
DNλ

TDIStageλ
+ bλ, (1)

in which DNλ is the level-1 raw data, TDIStageλ is a scale
factor provided in the header file, and aλ and bλ are the mul-
tiplicative and additive factors.

The data didn’t provide the conversion from radiance to
reflectance. We estimated the ESUNλ value based on the
1985 Wehrli standard extraterrestrial solar irradiance spec-
trum (as shown in Figure 1) and the spectral response func-
tions of all sensors of the Zhuhai-1 satellites (there are a few
differences between each sensor). Then we had the TOA re-
flectance of each band ρλ as

ρλ =
πLλd

2

ESUNλ
cos(θs), (2)

Fig. 2: PMNet

where ESUNλ0
was calculated from

ESUNλ0 =

∫ λ2

λ1
E(λ)S(λ)dλ∫ λ2

λ1
S(λ)dλ

. (3)

We provide the ESUNs values of all sensors of the Zhuhai-1
satellites we used in Table 1.

2.2. Method

Our method is shown in Figure 2. We take inputs of the TOA
reflectance, latitude, longitude, solar zenith angle, off-nadir
angle and meteorological parameters into a multitask network
and output two values: PM2.5 and PM10. In training, we set
a learning rate of 0.5 with the AdaDelta optimizer, used a
batch size of 4, and adopted the Snapshot Ensemble method
[20]. Of the 77 records, 11 were reserved for validation and
66 were used in training.

3. RESULTS AND ANALYSIS

3.1. Accuracy of estimation

In Figure 3 we show the estimation accuracy in term of R-
squared for PM2.5 and PM10. Figure 3a was the fitting on
PM2.5 where it achieved an R-squared of 0.77, and Figure 3b
was the fitting on PM10 where it achieved an R-squared of
0.42.

3.2. Comparison between hyperspectral and multispec-
tral data

We used the bands 2, 7, 13, and 27 of the Zhuhai-1 hyper-
spectral data to simulate 4-band multispectral data. Based
on the simulated multispectral data, the model achieved an
R-squared of 0.22 on PM2.5 estimation (vs. 0.77 of hyper-
spectral data) and an R-squared of lower than 0.10 on PM10
estimation. This comparison shows the superiority of hyper-
spectral data in estimating PM.



Table 1: ESUNs of the Zhuhai-1 Sensors

Band A-CMOS1 A-CMOS2 A-CMOS3 C-CMOS1 C-CMOS2 C-CMOS3 D-CMOS1 D-CMOS2 D-CMOS3

B01 1994.40 1997.24 1985.72 1999.07 2000.18 1963.43 2001.16 2005.57 1992.02
B02 2026.72 2033.41 2037.89 2035.24 2040.49 2032.90 2042.90 2042.16 2037.44
B03 1905.49 1920.94 1920.05 1916.60 1910.91 1906.35 1911.07 1926.53 1910.55
B04 1792.47 1820.72 1797.49 1808.96 1818.78 1815.91 1805.23 1795.35 1816.00
B05 1899.57 1911.70 1907.54 1889.60 1887.24 1888.81 1900.38 1898.13 1887.45
B06 1857.66 1867.86 1864.57 1871.60 1871.89 1871.87 1872.74 1873.02 1870.85
B07 1812.80 1831.26 1828.39 1839.67 1839.63 1839.48 1836.62 1836.75 1840.57
B08 1816.54 1844.81 1839.62 1840.97 1841.97 1841.46 1839.02 1839.13 1838.81
B09 1778.48 1784.24 1785.88 1781.32 1779.84 1781.34 1784.05 1782.12 1780.22
B10 1741.05 1734.45 1738.05 1730.31 1728.27 1729.15 1729.51 1729.83 1733.55
B11 1675.72 1677.15 1676.03 1677.25 1676.54 1677.29 1676.33 1676.61 1678.76
B12 1636.47 1639.04 1642.66 1637.43 1635.76 1635.53 1635.63 1636.31 1637.76
B13 1500.06 1499.58 1521.23 1528.16 1526.70 1522.82 1517.91 1512.54 1530.66
B14 1533.28 1531.77 1534.99 1531.55 1528.16 1530.81 1530.66 1531.06 1532.62
B15 1467.95 1468.09 1469.24 1470.86 1466.42 1469.42 1467.85 1468.15 1468.62
B16 1410.68 1406.33 1413.09 1411.41 1408.35 1410.05 1410.63 1409.10 1413.15
B17 1363.36 1352.81 1366.45 1362.42 1356.21 1357.92 1359.05 1354.83 1357.53
B18 1329.28 1327.26 1331.48 1329.11 1322.49 1327.41 1326.59 1325.50 1329.97
B19 1278.27 1279.84 1279.40 1275.19 1272.84 1275.32 1275.68 1275.61 1276.80
B20 1243.03 1240.54 1243.85 1240.87 1236.25 1239.80 1239.18 1239.60 1238.70
B21 1195.05 1195.53 1196.70 1194.02 1192.54 1193.20 1193.10 1193.30 1195.02
B22 1171.44 1167.55 1170.68 1165.65 1159.44 1165.17 1165.72 1164.51 1163.43
B23 1123.01 1119.83 1125.35 1123.14 1119.24 1121.50 1119.27 1120.22 1119.76
B24 1085.63 1077.91 1085.03 1085.13 1082.80 1082.75 1081.18 1080.54 1087.94
B25 1050.96 1051.10 1052.10 1048.66 1046.53 1046.77 1049.40 1048.05 1051.21
B26 1004.87 994.54 1000.71 990.48 985.54 988.77 986.60 983.80 995.13
B27 958.19 943.35 961.60 965.67 964.54 965.45 960.54 958.62 966.97
B28 964.80 958.59 961.60 962.79 961.45 962.24 962.41 962.15 968.58
B29 932.15 935.42 932.18 927.27 926.26 923.65 929.68 931.33 926.24
B30 878.39 878.22 882.46 880.63 879.72 876.86 877.39 878.63 875.29
B31 832.16 830.28 833.12 832.46 831.66 829.77 830.93 831.84 829.23
B32 803.54 803.49 818.01 801.55 801.63 799.29 801.11 804.53 806.01

(a) R2 = 0.77. (b) R2 = 0.42.

Fig. 3: Estimation of PM2.5 and PM10. X-axis: estimated values; y-axis: ground-station values.

3.3. Mapping PM2.5 of Nanchang City on 6 Oct 2018

We applied the trained model on a Zhuhai-1 hyperspectral im-
age captured on 6 Oct 2018 over the Nanchang City, a south-
ern Chinese city. At the time of imaging, the off-nadir angle,
the solar zenith angle, temperature, relative humidity, wind
speed and air pressure were 0.40984, 53.13548, 27.3◦C, 29,
3, and 1012 millibars, respectively. The model applied on
pixels with band-1 reflectance smaller than 0.2. For missing
pixels, we used the random forest where the latitude and lon-
gitude as inputs to estimate PM2.5 as outputs. The map is
shown in Figure 4.

As shown, road networks were notable with high concen-
trations of PM2.5. The center left area, which appeared to be

a large construction site, had the highest PM2.5 value in this
area. Areas with abundant trees, which appeared in red on
the right, showed low air pollution on the left. Overall it is
possible to distinguish near-road or off-road air pollution.

4. CONCLUSION

In this study, we co-estimated PM2.5 and PM10 from hyper-
spectral data at 10 m spatial resolution. Results show that an
R-squared of 0.77 for PM2.5 and an R-squared of 0.42 for
PM10 can be achieved even with a limited set of samples.
Near-road air pollution and construction-related air pollution
were successfully distinguished in a case study of Nanchang
City, China. Future studies may benefit from the detailed es-



Fig. 4: Subset of the estimated PM2.5 of Nanchang City on 6 Oct 2018. Left: predicted PM2.5. Right: False Color Map.

timation to investigate people’s health and their exposure to
air pollution.
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