Data and code for the published paper in IEEE Geoscience and Remote Sensing Letters: https://doi.org/10.1109/LGRS.2024.3398689
GitHub repo at https://github.com/skrisliu/dfgp
pytorch==2.0.1 gpytorch==1.11
Tested on Python 3.9, Ubuntu 18.04.6 LTS, with 1080 Ti 11GB GPU. Running on CPU is possible but significantly slow.
This repo includes the MODIS-LA data, with trained CNN network and deep features. For the EMIT-BJ data, download from Google Drive.
data/modis/im.npy # features, 240*300*13, the last two dimensions are xy coordinates data/modis/aod.npy # label, 240*300 data/modis/trainmask.npy # train mask, 240*300 data/modis/testmask.npy # test mask, 240*300 data/modis/fea64.npy # deep features, 240*300*64 data/modis/cnn.pt # trained CNN model
Data required to run the MODIS-LA demo are included in this repo.
Python demo12_modis_dfgp.py
Python demo12_modis_dfgps.py
Python demo11_modis_cnn.py
Requires networks.py and rscls.py to clip the image and load the network.
Please cite this paper as:
S. Liu and L. Zhang, "Deep Feature Gaussian Processes for Single-Scene Aerosol Optical Depth Reconstruction," in IEEE Geoscience and Remote Sensing Letters, vol. 21, pp. 1-5, 2024, Art no. 5505705, doi: 10.1109/LGRS.2024.3398689
@article{liu2024deep, title={Deep Feature Gaussian Processes for Single-Scene Aerosol Optical Depth Reconstruction}, author={Liu, Shengjie and Zhang, Lu}, journal={IEEE Geoscience and Remote Sensing Letters}, year={2024}, publisher={IEEE} }